The water footprint of producing and distributing vegetable crops grown on the Steenkoppies Aquifer in Gauteng, South Africa

Michael van der Laan and Betsie le Roux

#### Water efficiency in the agri-processing sector in South Africa:

practices, challenges and opportunities



UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA









# Virtual water



- Virtual water accounts for all the water used to produce a product
- Useful to monitor the virtual flow of water between regions
- When reported as a water footprint it includes information on what, when and where

# Virtual water flows





UNIVERSITY OF TWENTE.



## Definitions of water footprint terms

Blue water refers to surface water (rivers, lakes, dams) and groundwater available to multiple users

Green water is water originating from rainfall that is stored in the soil

Grey water (footprint) refers to the volume of water required to dilute emitted pollutants to ambient levels

## Calculations

 $\frac{Blue \ waterfootprint}{Crop \ yield} = \frac{\min(irrig \ required, irrig \ applied)}{Crop \ yield}$ 

$$Green waterfootprint = \frac{Crop \ ET \ - \ blue \ water \ use}{Crop \ yield}$$

 $Grey water footprint = \frac{Pollutant load/(Cmax - C_{min})}{Crop yield}$ 





functional unit with standard deviation (m<sup>3</sup> tonne<sup>-1</sup>) Average water footprints using fresh mass as

## Crop water footprints

| Crop     | Month  | Average seasonal WFs of crops (m <sup>3</sup> tonnes <sup>-1</sup> ) |       |              |      |
|----------|--------|----------------------------------------------------------------------|-------|--------------|------|
|          |        | Blue                                                                 | Green | Blue + Green | Grey |
| Carrots  | Summer | 36                                                                   | 25    | 61           | 48   |
|          | Autumn | 104                                                                  | 12    | 116          | 60   |
|          | Winter | 88                                                                   | 7     | 95           | 52   |
|          | Spring | 45                                                                   | 17    | 62           | 39   |
| Cabbage  | Summer | 38                                                                   | 29    | 66           | 66   |
|          | Autumn | 53                                                                   | 11    | 64           | 31   |
|          | Winter | 77                                                                   | 1     | 79           | 18   |
|          | Spring | 63                                                                   | 16    | 79           | 46   |
| Beetroot | Summer | 60                                                                   | 40    | 100          | 92   |
|          | Autumn | 87                                                                   | 14    | 101          | 33   |
|          | Winter | 121                                                                  | 3     | 124          | 20   |
|          | Spring | 104                                                                  | 15    | 118          | 96   |
| Broccoli | Summer | 142                                                                  | 120   | 262          | 183  |
|          | Autumn | 225                                                                  | 76    | 301          | 575  |
|          | Winter | 322                                                                  | 5     | 327          | 540  |
|          | Spring | 170                                                                  | 44    | 214          | 214  |
| Lettuce  | Summer | 31                                                                   | 24    | 56           | 100  |
|          | Autumn | 51                                                                   | 20    | 71           | 131  |
|          | Winter | 93                                                                   | 1     | 93           | 56   |
|          | Spring | 56                                                                   | 6     | 62           | 80   |
| Maize    | Summer | 452                                                                  | 253   | 707          | 377  |
| Wheat    | Winter | 732                                                                  | 30    | 762          | 443  |

| Crop    | Season | Blue WF                                    |  |
|---------|--------|--------------------------------------------|--|
|         |        | WFN (m <sup>3</sup> tonnes <sup>-1</sup> ) |  |
| Carrots | Summer | 36                                         |  |
|         | Autumn | 104                                        |  |
|         | Winter | 88                                         |  |
|         | Spring | 45                                         |  |







Blue plus green water footprint to supply a man (aged 31–50) with their Recommended Dietary Allowance (RDA) in terms of selected nutrients

#### Packhouse water footprints 1,8 Packhouse blue water footprint of 1,6 1,4 1,3 (m<sup>3</sup> tonnes<sup>-1</sup>) 1,2 1,0 0,9 0,8 crops ( 0,6 0,3 0,4 0,2 0,0 Carrots Cabbage Lettuce Crops

#### Relative water footprints



The in-field water footprint (evapotranspiration) is often >98% of the total water footprint

# Wastage





## Wastage along supply chain



### Average annual wastage



## Wastage – correct term?

### Irrigation water use on Steenkoppies



#### **Catchment level irrigation WF**







 If we use the maximum maize blue water footprint obtained in this study (676 m<sup>3</sup> tonne<sup>-1</sup>), this equates to 8.4% of river flow (10 002 l s<sup>-1</sup>), while if we use the minimum blue water footprint (338 m<sup>3</sup> tonne<sup>-1</sup>), this equates to 4.4% of river flow (5 001 l s<sup>-1</sup>)



Yields <50% of realistically attainable yields in many parts of the world (e.g. SSA)

## **Conclusions - general**

- Awareness raising among consumers through water footprinting has been great
- But product labelling of specific water footprints will not happen (MvdL)
  - There are the socio-economic factors linked to water use that are not captured by a water footprint

## Conclusions – eco-labelling

- Values can differ widely for same crop in different seasons and different areas
- "Interesting information, but not for decision making" (consumer or government)
  - Water systems complex, no method can produce a single metric as with carbon footprint

## Conclusions – methods

- <u>Application depends on objectives</u>, we now have more tools in the toolbox, plus they can be used synergistically
- Farmer benchmarking will need to be for a specific area

## Acknowledgements

- Water Research Commission Project K5/2273
  'Estimating the water footprint of selected vegetable and fruit crops in South Africa'
- National Research Foundation
- Prof Keith Bristow, Teunis Vahrmeijer, Prof John Annandale







#### MDPI

#### Article

#### Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit

Betsie le Roux <sup>1</sup>, Michael van der Laan <sup>1,\*</sup>, Teunis Vahrmeijer <sup>1,2</sup>, John G. Annandale <sup>1</sup> and Keith L. Bristow <sup>1,3</sup>



Contents lists available at ScienceDirect Science of the Total Environment



journal homepage: www.elsevier.com/locate/scitotenv

Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress



Betsie le Roux <sup>a,\*</sup>, Michael van der Laan <sup>a</sup>, Teunis Vahrmeijer <sup>a,b</sup>, Keith L. Bristow <sup>a,c</sup>, John G. Annandale <sup>a</sup>





#### Article

Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa

Betsie le Roux <sup>1</sup><sup>(0)</sup>, Michael van der Laan <sup>1,\*</sup>, Teunis Vahrmeijer <sup>1</sup><sup>(0)</sup>, John G. Annandale <sup>1</sup><sup>(0)</sup> and Keith L. Bristow <sup>2</sup>

> IRRIGATION AND DRAINAGE Irrig. and Drain. (2018) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ird.2285

COMPARING THE USEFULNESS AND APPLICABILITY OF DIFFERENT WATER FOOTPRINT METHODOLOGIES FOR SUSTAINABLE WATER MANAGEMENT IN AGRICULTURE  $^{\dagger}$